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Abstract: This study demonstrates the 3D visualization of the lamina cribrosa (LC) structure
and its correlation with volumetric data, pore volume, and disc area in glaucomatous and non-
glaucomatous eyes. The participant cohort included 65 glaucomatous and 58 non-glaucomatous
eyes (13 suspected glaucoma and 45 normal). An ophthalmologist diagnosed glaucoma patients
and all subjects were over 18 years old, passed a visual field test, and underwent optical coherence
tomography (OCT) examinations. LC images were obtained using the DRI OCT Triton, while
optic disc images were obtained from the enface image of the Cirrus HD-OCT 5000. Since LC
images alone did not provide clear edge information, we used optic disc images as a reference
for edge detection. To achieve this, we employed a fine-tuned model, specifically a pre-trained
U-shaped Encoder-Decoder Network with Attention. This model was used to obtain a segmented
mask, which was then aligned and utilized to locate the edge of the LC in the LC images. A
blood vessel mask was created to remove blood vessels, as they can interfere with the accurate
visualization and analysis of LC characteristics. This step allowed for the 3D reconstruction
of the LC structure without the presence of blood vessels. Correlations between LC volume,
pore volume, and pore volume to LC volume were calculated separately for glaucomatous and
non-glaucomatous eyes. We divided the areas for considering the LC structure into three types:
overall, quadrants, and 12-clock-hour sectors. Based on the experimental results, we found that
the pore volume and pore-to-LC volume were different between glaucoma and normal across all
areas considered. In conclusion, this research generated 3D images of the LC from OCT images
using computer techniques, showcasing a microstructure that closely resembles the actual LC.
Statistical methods were employed to calculate and analyze the differences observed between the
two groups of samples.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Glaucoma is a disease that damages the optic nerve and leads to vision loss and blindness.
Currently, it is one of the leading causes of irreversible blindness in the world [1-3]. In 2006,
60.5 million people were diagnosed with glaucoma, which is expected to increase to 79.6 million
in 2020. Almost half of them are located in Asia. Approximately 11 million people around the
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world are blind in both eyes. As glaucoma is asymptomatic, especially in the early stage, over
50% of patients with glaucoma remain undiagnosed as they do not seek ophthalmic examination.
As a result, they are prone to lose sight before receiving proper treatment [4], highlighting
the importance of early detection and management of glaucoma. In the diagnosis process for
glaucoma, the ophthalmologist will typically measure intraocular pressure and examine the optic
nerve head (ONH) and visual field through various investigation tools.

In glaucoma, the optic nerve tissue surrounding the ONH begins to deteriorate in accordance
with the severity of the disease. Elevated intraocular pressure is a known risk factor for ONH
deterioration. It compresses the lamina cribrosa (LC), a multi-layered mesh-like tissue located
deep within the ONH. There are pores or narrow channels for the optic nerve and blood vessels
to pass through. To detect degeneration of ONH, optical coherence tomography (OCT) is used.
It is designed to take pictures deep under the surface level. The thickness of ONH and LC
can then be examined. OCT can also help diagnose other eye diseases, such as clogged blood
vessels in the retina, macular disease, retinal fibrosis, retinal detachment, and retinal blood vessel
abnormalities.

Unfortunately, the image quality from currently available commercial OCT devices to visualize
LC for glaucoma diagnosis, swept-source OCT (SS-OCT), is poor. When capturing images of
the LC, the fine details and microstructures, such as the internal edges, anterior and posterior
borders, and pores, are not clearly visible. As a result, it is necessary to improve the image quality
of OCT devices to enhance the visibility of LC to improve the diagnosis. It may help to explain
the pathogenesis of glaucoma. This can be done in two ways: (i) by improving the OCT engine
to get better images or (ii) by improving the images.

OCT tools can be improved by applying an adaptive optics (AO) principle in the tools. The
improvements by this method are high cost due to the need to add various devices to the system.
At present, it is not used in the examination room. Only one company exports AO-OCT for
research [5]. Thus, to reduce the cost of improving image quality in this study, we used computer
techniques — image processing and machine learning. While image processing techniques are
suitable for simple images [6], machine learning techniques can improve the accuracy and speed
of image processing for very complex images. For example, when segmentation details in the
image or the edge of the Region of Interest (ROI) are unclear, machine learning can help. Neural
network models such as Artificial Neural Networks (ANN), Convolutional Neural Networks
(CNN), and Recurrent Neural Networks (RNN) can be trained to improve the efficiency of image
processing and enhance the accuracy of glaucoma diagnosis [7,8].

The main objective of this research is to achieve the three-dimensional visualization of the LC
structure and obtain discriminant characteristics of the three-dimensional LC structure between
glaucomatous and non-glaucomatous cases. The three-dimensional LC was reconstructed using
images obtained from a commercial SS-OCT device. The study focused on extracting the
following characteristics: (i) the volumetric data of the LC and the porosity within the LC for
both glaucoma and healthy subjects, and (ii) investigating the relationship between the volumetric
data of the LC structure and the porosity.

The rest of this paper is organized into the following sections: Related works in Section 2,
reviewing relevant research and summarizing the advantages and limitations of those works;
Section 3, Materials and methods, discussing the research process, consisting of data collection of
samples from tools and techniques used; Section 4. reports the results and discussion, consisting
of the clinical study results and the 3D structure of the sample; and Section 5. is the conclusion.

2. Related works

Tezel et al. [9] studied pore expansion within the LC in glaucoma patients, and Akagi et al. [10]
studied pore changes within the LC in glaucoma patients and normal eye subjects. Tezel’s team
compared optic disc images of glaucoma patients over three years in the NIH Image program.
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They found that the patterns of porosity within the LC changed among three patterns: circles,
ovals, and stripes. The total pore area of the LC in patients increased. Akagi’s team studied pore
deformation within the LC using disc photography, scanning laser ophthalmoscopy (SLO), and
adaptive optics scanning laser ophthalmoscopy (AOSLO). They calculated the pore areas from
the images and found that the total pore areas of LC in patients were larger than those in healthy
subjects.

In addition, the volumetric data of LC has been studied in the past. Nadler et al. proposed
a method for reconstructing a 3D image from a stack image using LC images from adaptive
optics spectral domain-OCT (AO-SD-OCT) that have passed a segmentation process [6]. The
characteristics of the LC structure were compared among three groups of samples: people with
healthy eyes, glaucoma patients, and people at risk of glaucoma. The LC structure in the patients
was found to have a smaller volume than that in the healthy eyes. The 3D image generated
by AO-SD-OCT clearly showed the small structure and the contrast between the ROI and the
background. However, there is a limitation that only a part of the LC can be seen in an image
because of reflections of the tissue and blood vessels in front of the ONH.

Besides, we have reviewed how to improve the anatomical images of the eye, including the optic
disc and cup, by computer techniques, i.e., image processing and machine learning techniques.
Choukikar et al. applied simple image processing techniques, the thresholding technique, to
separate the optic disc from enhanced images using histogram equalization. This approach is
simple; however, it is inefficient when the image being analyzed has poor contrast or quality
— the optic disc is not clearly visible [11]. However, the use of image processing techniques
may not be sufficient for complex tasks. Therefore, there are many efforts to employ machine
learning to tackle problems [7,8,12]. Almazroa et al. presented a method for segmentation of an
optic disc image from a fundus image [12]. They applied level set and localization techniques to
determine the extent of the optic disc and compare its accuracy. The edges were labeled by an
ophthalmologist. The accuracy of the system was 83.9%. Mangipudi et al. presented a method
for classifying optic disc and cup images using deep learning [8]. The U-shaped Encoder-Decoder
Network (U-net) model was tested on three sets of data: DRISHTI-GS, DRIONS-DB, and
RIM-ONE v3. The Intersection Over Unions (IoUs) were 96.6%, 96.2%, and 98.4% for the optic
disc, respectively. However, there was still an issue with images where the optic disc or cup
had low contrast with the background, and the model performed poorly on images with a small
cup. Surendiran et al. also presented a method for classifying optic discs and cups [7]. They
compared active contour segmentation with level set function, ANN, K-means, CNN, Fuzzy
C-means, and a modified RNN that combined convolutional network with RNN on five data sets.
The modified RNN was found to be the most efficient because they were able to capture the intra-
and interslice contexts.

Moreover, the structure, porosity, and 3D visualization of LC have already been investigated. In
studies by Akagi et al. [10] and Nadler et al. [6], it was found that using OCT with an application
of adaptive optics produced clearer images. However, this achievement came with a high cost.
Thus, the system was only used for research purposes, not usually used in an examination room.

This study aims to utilize images obtained from commercial OCT devices and employ computer
techniques such as image processing and neural networks to enhance them and reconstruct 3D
LC structures. The 3D LC structures can then be analyzed to differentiate between glaucomatous
and non-glaucomatous eyes.

3. Materials and methods

The study was conducted at the Department of Ophthalmology, Faculty of Medicine, Chula-
longkorn University, and King Chulalongkorn Memorial Hospital. The institutional review
board of the Faculty of Medicine, Chulalongkorn University, in accordance with the Declaration



Research Article Vol. 14, No. 9/1 Sep 2023/ Biomedical Optics Express 4630 |

Biomedical Optics EXPRESS A

of Helsinki approved the research protocol, document number 149/61. The written informed
consent was obtained from all participants.

3.1. Study population

In this study, the participating subjects were 58 healthy people and 65 glaucoma patients
who underwent SS-OCT as part of their routine glaucoma follow-up at the Department of
Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn
Memorial Hospital. All healthy volunteers were selected under the following criteria: (1) no
glaucomatous optic neuropathy or visual field defect; (2) no retinal, neuro-ophthalmological,
psychological, or neurological disease that influences the ability to perform visual field analysis,
fundus photography, and OCT; (3) spherical refractive error within +6 diopters and astigmatism
less than three diopters; and (4) no history of eye trauma or intraocular surgery. Nevertheless,
some cataract patients or patients after cataract surgery also participated in the study. The two
groups of subjects who passed the criteria were over 18 years of age and had both eyes examined
by the instruments listed in Table 1.

Table 1. Methods of eye examination with the tools and criteria that were used to select samples

Medical Device

Test Reliability Criteria
Algorithm Device

Visual field SITA-standard ~ Humphrey Field Analyzer (Carl - Fixation Loss < 20%

testing 24-2 Zeiss Meditec, Dublin, CA) - False Positive and Negative Error < 15%

- Signal Strength Index > 6

Optic disc cube  Cirrus HD-OCT 5000 (Carl - The edge of the Optic Disc must be clearly visible.

200x200 Zeiss Meditec, Dublin, CA)
OCT - There are no black bars covering the image area.
4D wide DRI OCT Triton (Topcon, - There are no black bars covering the image area.
Inc., Tokyo, Japan) - The cup is not too deep that holes will appear on the image.

3.2. OCT image acquisition

OCT is an instrument that uses the low coherence principle and detects reflected light signal after
it was backscattered from the sample [13]. Generally, it is a Michelson Interferometry system.
The light source is a broadband laser. There are two types of signal: (1) A-Scan is a signal that is
detected at various depths of a sample, and (2) B-Scan is a signal generated from the unevenness
of the refractive index at different depths in the sample. When the signal is rendered into an image,
it will be a cross-section of the sample [14], shown in Fig. 1(a). The first generation of OCT was
a time-domain OCT (TD-OCT) system that was slow. It has been developed into spectral-domain
OCT (SD-OCT) and swept-source OCT (SS-OCT) by improving the transducer’s sensitivity.
At present, it is used in the medical and other industries. This research collected experimental
image data from glaucoma patients and healthy individuals using two OCT devices: the DRI
OCT Triton (SS-OCT type) and the Cirrus HD-OCT 500 (SD-OCT type).

LC images LC images of both eyes from DRI OCT Triton were captured with a 3D wide
program and exported via the Enface algorithm in IMAGEnet6 software. The instrument had a
light source with a wavelength of 1,050 nm and a scanning rate of 100,000 A-scans/sec. It had a
resolution of 11.7 um/pixel in the axial scan. The image size was 512 x 384 pixels. The exported
images were a set of enface images, as shown in Fig. 1(b), and a cross-section image, as shown in
Fig. 1(a). We selected only one eye image with a higher percentage of quality, as determined
through the Enface algorithm. From all images, a specific set of Enface images, taken from the
first image of the anterior LC surface down to the posterior LC surface as shown in Fig. 1(a), was
then selected for further analysis. The anterior LC surface was located below the cup, where the
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(a) Cross-section of the LC image and position of the
anterior border to the posterior border (b) A set of Enface images

Fig. 1. Images of LC taken by the DRI-OCT, an SS-OCT type

tissue exhibited clear thickening in the highly reflective region until reaching the non-reflective
region, which was the location of the posterior LC surface [15].

It should be noted that the functionality of images taken by SS-OCT was limited due to the
presence of low-density LC tissues, which made it difficult to clearly define the extent of the LC,
as shown in Fig. 1(b). As a result, the LC region in that area could not be accurately identified
[16]. The LC is typically cylindrical within the optic disc and has the same boundary. Therefore,
we utilized data from optic disc images obtained from HD-OCT, which had clear boundaries, to
identify the extent of the LC in SS-OCT images.

Optic disc images Both eyes’ optic disc images were enface images from Cirrus HD-OCT
5000 and a 200 x 200 Optic disc cube program. OCT had a light source wavelength of 840 nm.
The scanning rate was 27,000-68,000 A-scans/sec. The resulting image is 562 x 563 pixels.
Figures 2(a) and 2(b) show an example of an optic disc image taken by the HD-OCT and LC
images taken by the DRI-OCT from the same eye, respectively.

(a) Optic disc image (b) LC image

Fig. 2. Optic disc and LC images are taken from the same participant. The edges of the
optic disc image are more clearly defined than that of the LC image.

When using the OCT tool to capture photos, it is important to ensure that the resulting images
do not have black bars covering the image area caused by the participant moving their face away
from the device while taking the image. Such black bars can lead to insufficient ROI information.
Furthermore, it is important to consider the depth of the cup during image export. The exported
images in this research only encompassed the region below the cup, as the focus was on the
lower part. As previously mentioned, the anterior LC surface was immediately beneath the cup.
However, due to the tool’s limitations, exporting deep cup images down to the posterior LC
surface was not feasible in some instances. The OCT used in the study had a scanning range of
12 mm, limiting the capture of samples with a distance between the cornea and the posterior LC
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surface of less than 12 mm. Consequently, images of these samples were not eligible for further
analysis.

3.3. Proposed experimental framework

In this section, we describe the methods used in the study process. They consisted of (1) optic
disc segmentation in the optic disc image to be used as data for determining the edge of the LC
from the LC image, (2) blood vessel removal from LC using the maximum principal curvature
algorithm, (3) alignment of segmented optic disc image and LC image by image processing
technique, and (4) 3D reconstruction, reconstructing LC images that have undergone all the above
procedures to form a 3D structure. The proposed framework is illustrated in Fig. 3.

77 Optic disc -

o

s process

Optic disc
image

0
=

Blood vessel
removal process

images process

Q
Alignment of
—

3D reconstruction
process

—

Input stack of
LC images

3D reconstruction
image

Fig. 3. Proposed Experimental Framework

Optic Disc Segmentation Initially, we evaluated the effectiveness of Gaussian filtering and
image thresholding as a basic approach for segmenting LC images. However, the results revealed
that certain edge information was absent in the regions where some LC tissues exhibited lower
density than others. Consequently, the LC’s boundary in those areas could not be accurately
identified. Hence, to address the issue of missing edge information in LC images, we used an
optic disc image to assist with edge detection. Specifically, we used a U-shaped Encoder-Decoder
Network with Attention (Attn U-Net) model to segment the optic disc image and use the
segmented optic disc image to identify the LC edge in the LC image accurately. Attn U-Net used
the basic principles of U-Net but added an attention gate to weigh the feature maps from the skip
connections, allowing the network to focus on more informative features and ignore less relevant
ones [17]. The Attn U-Net architecture is illustrated in Fig. 4.

i

— Skip Connector

L~
v

Max-Pooling “f‘ Attention Gate

[ ] ConV+ReLU

Upsampling
Fig. 4. Simplified schematic of Attn U-Net

In this step, we assigned the edges of the optic disc determined from the optic disc image to
be the edges of the LC. Due to the small sample size, we employed a pre-trained Attn U-Net
model [18] and fine-tuned it using our optic disc image dataset of 77 images, which were labeled
with ground truth images using the LabelMe application [19] by a specialist ophthalmologist.
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Although the labeled images could have been utilized for further analysis, we opted to employ
segmented images generated by a segmentation model. This decision was motivated by our
aim to develop an automated system capable of handling large sample sizes in the future. In
this work, the dataset was divided into 80:10:10 for training, validation, and testing. While we
understand the limitations of having a small number of test images, we have taken measures to
address this concern. Instead of running the experiment only once with the limited test set, we
conducted the experiment ten times with different random splits of the data. By doing so, we
were able to generate a more comprehensive evaluation of our model’s performance. The model
was fine-tuned using the Adam optimizer with a learning rate of 1 x 107 with a small number of
epochs. During the fine-tuning process, the model aimed to minimize the loss function, which
utilized the cross-entropy loss. The optimal epoch was selected based on the lowest loss observed
on the validation set. Subsequently, the optimal model was chosen based on the performance
achieved at the optimal epoch.

In the overall picture, the model demonstrated impressive performance with an area under the
receiver operating characteristic curve (AUROC) of 0.97 + 0.03 and a mean average precision
(MAP) of 0.90 + 0.07, across ten runs. These results highlight the promising performance of
the model in accurately classifying and detecting the target variable. It is worth mentioning that
our task is not excessively complex, and the utilization of a pre-trained model with fine-tuning
on a relatively small number of annotated images contributes to achieving such performance.
Additionally, the U-net model has shown promising performance even with a small number of
annotated images, as reported in previous studies [20]. We randomly selected one model out of
the ten available models and employed it for automatic segmentation. The model’s cross-entropy
loss function values on the training and validation sets are depicted in Fig. 5. It is evident that the
model achieves its lowest loss after five epochs and starts to exhibit signs of overfitting thereafter.
Therefore, the optimal model is selected at this epoch. The model performed well on the test set,
achieving an AUROC of 0.97 and a MAP of 0.90. We also evaluated the model on the training
and validation sets, with the following results: for the training set, ROC = 1.0 and MAP = 0.99,
and for the validation set, ROC = 0.97 and MAP = 0.79. Overall, considering all sets (training,
validation, and test), the model achieved a ROC of 0.99 and a MAP of 0.98. These metrics
demonstrate a strong correlation between the predicted segmentations and the labeled images,
providing confidence in the accuracy and reliability of our segmentation model for this study.

Training Loss
0.5+ —— Validation Loss

0.44
0.34

0.2
0.14

0.0

Loss

T T T T T
0 2 4 6 8 10
epoch

Fig. 5. Cross-Entropy loss on the training and validation sets of the model

Blood Vessels Removal To create an optic disc mask that removes the blood vessels, two
potential options are color fundus images and enface optic disc images. However, in this work,
we have chosen to utilize enface optic disc images for several reasons: (i) Enhanced Visualization:
Enface optic disc images acquired through OCT scanning offer depth information and enable
visualization of various components within the sample, such as the structure, optic cup, and
blood vessels. This imaging modality provides a clearer representation of these components
compared to color fundus images, which primarily emphasize the visualization of blood vessels.
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(ii) Boundary Accuracy: The boundary of the optic disc obtained from color fundus images
may not align precisely with the boundary derived from enface optic disc images. Color fundus
images capture a wide-angle view, resulting in a smaller size (lower resolution) of the optic disc.
Additionally, reflections from the lower part of the disc, known as the cup, can overlap with the
disc boundary in color fundus images, making it challenging to differentiate between the two.
Considering these factors, we have determined that utilizing enface optic disc images from OCT
provides a more suitable and reliable approach for our work. This approach allows for accurate
analysis of the optic disc region, including tasks such as segmentation and the removal of blood
vessels.

The blood vessels were identified using the maximum principle of curvature algorithm [21].
However, when the maximum principle of curvature algorithm was directly applied to the image,
small details were observed at the edges of the blood vessels, resulting in scattered white pixels
throughout the images. To mitigate this issue, a Gaussian filter with a Gaussian width value of
3.5 was applied before utilizing the algorithm to eliminate these small details. Subsequently, the
resulting optic disc mask, which removes the blood vessels, was aligned with the stack of LC
images using our proposed alignment procedure. Figure 6 displays an example of the optic disc
and its corresponding mask without the blood vessels.

(b)

Fig. 6. Blood vessel removal process; (a) optic disc image with optic disc segment image
that applied Gaussian filter, and (b) optic disc segment image which removes the blood
vessels

Alignment To map the optic disc segment image (Ipp) — which is already removed the blood
vessel — onto the LC image (Iz¢) obtained from different OCT machines, it was necessary to
align them. The images obtained from the two machines differed in size and position of the
LC due to the default settings of the tools, as well as in the angle of the LC due to the eyeball
roll during shooting. Therefore, an alignment procedure was performed using image processing
techniques. The procedure involved the following steps: (i) Automated ellipse detection on
the Ipp image is performed using the regionprops function [22]. This function allows us to
measure various properties of ellipse regions within the image. Specifically, we extract three
key parameters: the length of the major axis (Lop), the angle between the major axis and the
x-axis (fop), and the center point of the ellipse (Cpp). (ii) Given a series of N images of I;¢; for
each eye, where i = 1, ..., N, the value of N is determined based on the distances between the
anterior and posterior LC surfaces. These distances are obtained by an ophthalmologist using the
software of the OCT tool. We calculate the average of the series I;¢c = % Zfi 1 Ic,i- Noted that
each eye may have a different number of images. Because I; ¢ has a disordered distribution of
white pixels, we applied a Gaussian filter with a Gaussian width o~ of 3 to it and performed ellipse
detection, obtaining three parameters: Ly c, ¢, and Crc. (iii) Adjust the LC position on the Ipp
and I ¢ to be in the same (x, y) coordinates by adjusting Cop to be in the same coordinates as the
Crc. (iv) Ensure that the major axis of the ellipse, as detected in image Ipp, aligns with that of
image I; ¢, this alignment is achieved by automatically rotating image Ipp so that the difference
between the angles obtained from ellipse detection, 6pp, and 6 ¢ (obtained from image I;¢) is
zero. (v) Adjust the size of the OD to the same size by adjusting the Lop to be the same length as



Research Article Vol. 14, No. 9/1 Sep 2023/ Biomedical Optics Express 4635 |

Biomedical Optics EXPRESS o~

Ly c, obtaining a mask that identifies the extent of the LC in I;¢;. (vi) Crop resulting Ipp and Irc
to cover the entire LC region by starting at C¢ and Cop and cropping 45 pixels in each direction
(left right, top, and bottom) This results in Tpp and ILC, with a size of 90 x 90. (vii) Apply
IOD onto the ILC, leading to ILC, = IOD ® ILC, The above steps can be written in pseudocode as
shown in Algorithm 1, and examples of each step are illustrated in Fig. 7.

(@

® ()]

Fig. 7. Image alignment process: (a) input optic disc image with edge detection, (b) ellipse
detection on the optic disc segment image, (c) input stack of LC images, (d) application of
Gaussian filter on the LC image, (e) ellipse detection on the LC image, (f) shifting the optic
disc segment image to the same coordinate as the LC image and rotating it until the major
axis aligns with the LC image, (g) cropping the stack of LC images, and (h) cropping the
optic disc segment image

3D Reconstruction In this process, a 3D LC image was generated from a stack of LC images
using Matlab [23]. In the first step, a stack of LC images, represented as 2D arrays as shown in
Fig. 8(a), was inputted and converted to a 3D array using the squeeze function. In the subsequent
step, solid volumes were generated from the 3D array of LC images using the isosurface function,
as shown in Fig. 8(b). Afterward, the resulting 3D LC reconstruction image was visualized using
the volumeViewer function. For visualization, the display format was set to volume rendering,
and the alphamap was selected as CT-soft tissue type, as shown in Fig. 8(c).
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Algorithm 1 Alignment Procedure

Require: Optic Disc Segment (Ipp), a series of N-LC Image (I.¢;), i = 1,...,N, and Gaussian
width (o)
Ensure: N-Cropped LC Image (Iy¢,),i=1,...,.N
1: [Lop, Cop, 6op] = Ellipse_Detection(Ipp) > Based on regionprops function
Ic=%3¥ Ley
I = Gaussian(I ¢, o)
[Lic, Cre, 81c] = Ellipse_Detection(I) > Based on regionprops function
Shift Cpp to be in the same coordinate as Cy¢
Rotate Ipp until its major axis aligns with that of I;¢
Calculate the scaling factor k = Lop/Li¢
IbD =~Resize(IOD, k)
[op, Irc.] = Crop(Ip, Trc.i)
Iici =1lop ®Ipc.
: return I;c;

R A A R ol 4

—_ =
_ O

(a) (b) (©

Fig. 8. 3D reconstruction process: (a) stack of LC images, (b) solid volume format, and (c)
3D reconstruction

4. Results and discussion

This section discusses two research findings: (1) the clinical study and (2) the three-dimensional
LC structure of glaucomatous and non-glaucomatous eyes.

4.1. Clinical study

A comparison was conducted between the characteristics of LC in 65 glaucomatous eyes and 58
non-glaucomatous eyes (comprising 13 suspected glaucoma and 45 normal eyes). However, there
were only 32 images of glaucoma eyes (49.2%) and 45 images of non-glaucoma eyes (77.6%)
that met the criteria specified in Table 1. In diagnosing glaucoma, various characteristics within
the study sample were considered. These include (i) Age, as glaucoma tends to be more prevalent
in older individuals. It is important to note that it is ideal for the control group’s age to be closely
matched to the glaucomatous eyes group. However, finding non-glaucomatous volunteers with a
similar age range proved to be challenging. The evidence indicated a change in the thickness of
the human LC of about 14 um per 10 years [24]. Based on this information, we considered that
the age difference between our two sample groups did not significantly impact the LC volume;
(ii) Retinal nerve fiber layer thickness (RNFL), which progressively thins with advancing age
[25]; (iii) Disc area; (iv) Cup-to-disc ratio, which was found to be higher in the glaucoma group
compared to the non-glaucoma group [26]; (v) Cup volume, which exhibited greater volume
in the glaucoma group [26]; and (vi) Visual field examination parameters, it was found that
mean deviation and visual field index of the glaucoma group were lower [27]. Consequently,
the parameters were collected, and the demographic data of the samples were summarized, as
presented in Table 2.
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Table 2. Demographic Characteristics of the Study Sample — mean value +
standard deviation

Characteristic Glaucoma (N = 32) Non-glaucoma (N = 45) p-value
Age (year) 69.80 + 10.40 61.20 + 11.50 0.002¢
OCT parameters

Average RNFL (um) 73.90 + 14.90 92.70 + 10.20 < 0.001”
Disc area (mm?) 2.00 + 0.49 2.09 +0.43 0.533"
Cup-to-disc ratio 0.73 £ 0.09 0.60 £ 0.12 < 0.001¢
Cup volume (mm?) 0.45 £ 0.29 0.26 +0.21 0.001”
Visual field parameters

Mean deviation (dB) ~7.69 +7.37 -1.25 £2.49 0.001%
Pattern standard deviation (dB) 6.39 + 4.64 1.94 + 0.59 <0.001?
Visual field index (%) 78.70 + 24.32 97.77 + 3.14 < 0.001”

“independent #-test
>Mann-Whitney U test

According to Table 2, significant differences were found in most of the characteristics between
the two groups (p<0.05) using an independent #-test for normally distributed data and Mann-
Whitney U test for non-parametric data, except disc area did not show a significant difference
in the sample groups (p = 0.533). This may be due to the variation in disc area size among
individuals. Instead, the unit norm of disc area, calculated through the cup-to-disc ratio [26],
should be considered.

In typical glaucoma studies, the LC structure is divided into four quadrants: Superior (Qs),
Inferior (Qy), Nasal (Qn), and Temporal (Q). Significant differences were observed in the pore
area within the Superior (Qs) and Inferior (Qg) quadrants between glaucoma and non-glaucoma
eyes [10]. Additionally, tissue loss was observed in the Qg and Qg quadrants during the early stages
of glaucoma [28]. To investigate the significant differences between glaucoma and non-glaucoma
eyes in more detail, we further divided the areas of Qg, Qr, Qn, and Qr quadrants. The LC
structure was divided into 12-clock-hour sectors, as illustrated in Fig. 9. Specifically, the Qg
quadrant encompassed sectors Sy, S11, and S, while the Q; quadrant included sectors Ss, S,
and S7.

(b) ()

Fig. 9. (a) LC with divided areas; the blue, yellow, red, and green regions represent the Qs,
Qn, Qr, and Qr, respectively, (b) Illustration of the quadrants, and (c) Illustration of the
12-clock-hour sectors of the right eye

This study investigated the differences in the LC between glaucoma and non-glaucoma eyes by
analyzing specific LC characteristics, namely LC volume, pore volume, and pore-to-LC volume.
LC volume can be calculated as Zi.i 1 W(iLC,,-), pore volume that refers to the volume occupied
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by the pores or void spaces within the LC structure, can be calculated as Zf.\i | B(;c,), when N
represents the number of LC images, and W(-) and B(-) represent the counts of white and black
pixels in an image, respectively. A white pixel is defined when the intensity of the pixel in an
LC image is greater than or equal to a threshold 7, while a black pixel is defined as having an
intensity less than the threshold 7. T is manually defined by an ophthalmologist who carefully
selects 12 LC images from different subjects, each with clearly visible pores, as depicted in
Fig. 10(a). The ophthalmologist adjusts T to 55, ensuring that the considering pores are distinctly
visible. To visually demonstrate the effect of the thresholding process, Fig. 10(b) showcases the
binarized LC images corresponding to the original images shown in Fig. 10(a). The pore-to-LC
volume is calculated as a percentage of the pore volume relative to the LC volume. These
three characteristics were extracted from the 3D representation of the LC obtained through the
procedure described in Section 3.3. These metrics are expressed in voxel units. The calculation
of these characteristics was performed for each section within the structural division considered,
which encompassed the overall LC (referred to as “overall”), the individual quadrants (referred
to as “quadrants”), and the proposed sector-based division (referred to as “sectors”).

Fig. 10. (a) The pore area identified by an ophthalmologist and (b) binarized LC images
obtained by applying the threshold T’

According to Table 3, an analysis of the overall structure revealed that the glaucoma group
exhibited a mean of 57,840.6 voxels, whereas the non-glaucoma group demonstrated a mean
of 70,967 voxels. This comparison yielded a statistically significant difference (p < 0.05) as
determined by an independent #-test, considering the normal distribution of the data. Similarly to
the pore volume, the glaucoma group had a mean of 2,160.9 voxels, whereas the non-glaucoma
group had a mean of 4,243.7 voxels, demonstrating a significant difference, determined using
the Mann-Whitney U test due to the non-normal distribution of the data. However, the main
difference in LC and pore volume is primarily influenced by the height of the LC volume. In our
data collection process, we observed distinct differences in the LC heights between the two groups
of samples. To account for the effect of height and provide a more comprehensive analysis, we
also consider the volumetric data of the LC and pores. In particular, we calculate the pore-to-LC
volume, which allows us to consider the pore volume in relation to one unit of LC volume. This
value provides insights into the relationship between pore volume and the overall LC volume,
helping to assess the significance of the pore structure within the context of LC characteristics.
The glaucoma group exhibited a mean of 3.6, while the non-glaucoma group showed a mean of
5.8. This difference was also statistically significant, analyzed using the Mann-Whitney U test.
Overall, the findings highlight significant disparities in the total LC structure, pore volume, and
pore-to-LC volume characteristics between glaucoma and non-glaucoma groups, reinforcing the
potential value of these parameters in distinguishing between the two conditions.

Considering the division of glaucomatous and non-glaucomatous eyes into quadrants, the
independent #-test revealed significant differences in the LC volume. At the same time, the
Mann-Whitney U test indicated significant differences in both the pore volume and pore-to-LC
volume in most of the quadrants (p<0.05). However, it is worth noting that in quadrant Qr, the
difference in the LC volume between glaucoma and non-glaucoma cases reached a significance
level of p = 0.054. This finding is consistent with a previous study [29], which reported the
slowest decline of tissues in this specific quadrant. Additionally, significant differences were
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Table 3. Comparison of the LC characteristics in glaucomatous and non-glaucomatous eyes,
analyzed in terms of overall, quadrant, and sector divisions. The reported values represent the
mean values along with their corresponding standard deviations. It is important to highlight that the
pore-to-LC volume was individually calculated for each sample and subsequently averaged.

Division LC volume (voxel)* Pore volume (voxel)” Pore to LC volume (%)”
Glaucoma Non-glaucoma  p-value Glaucoma Non-glaucoma p-value Glaucoma Non-glaucoma p-value
Overall
57,840.6+2995.6  71,967.0+2721.3 < 0.001 2,160.9+226.8 4,243.7+273.0 <0.001 3.6+0.3 5.8+0.3 < 0.001
Quadrants
Qs 14,643.3£773.9  19,396.6+733.2 < 0.001  622.0+64.2 1,269.8497.9  0.004 4.1£0.3 6.4+0.4 < 0.001
Qr 14,859.1£779.4 19,358.2+730.6 < 0.001 517.3£72.8 1,175.6£95.7 < 0.001 3.3+0.3 5904 < 0.001
Qn 13,392.6+703.4 16,251.8+711.6 < 0.001 713.0+93.4 1,248.6+93.3 < 0.001 5.1+0.5 7.6+£0.4 < 0.001
Qr 14,945.7£803.0  17,060.3+707.0  0.054 308.5+£26.3 549.8+43.9 0.021 2.1+0.2 3.4+0.3 < 0.001
Sectors
Si 4,083.4+236.8 5,088.8+213.7 0.003 205.4+25.9 386.5£32.7 < 0.001 4.7+04 7.5£0.5 < 0.001
S> 4,066.2+226.8 4,949.0+223.7 0.009 2152 +325 3574299  <0.001 5.0+0.6 7.1+£0.4 < 0.001
S3 4,928.3+290.5 6,245.6+304.6 0.011” 267.8+37.2 478.9+39.2 < 0.001 5.2+0.5 7.8+0.4 < 0.001
S4 4,398.1+218.4 5,057.2+249.5 0.231” 230.0+26.4 412.2+350 <0.001 5.1+04 8.1+0.5 < 0.001
Ss 4,084.9+213.3 5,290.8+212.5 < 0.001 208.6+28.2 4514353 < 0.001  4.9+05 8.3+0.5 < 0.001
Se 6,165.3+307.8 8,092.8+338.2 < 0.001 190.1+30.0 490.3+50.6 < 0.001  2.9+0.3 5.8+0.5 < 0.001
S7 4,608.8+286.5 5,974.6+£2524 < 0.001 118.6+20.9 233.9+24.3 < 0.001 2.4+0.3 3.9+0.3 < 0.001
Sg 4,696.5+578.5 5,586.4+252.4  0.034" 96.2+12.7 199.1+17.5 < 0.001  2.0+0.2 3.7+0.3 < 0.001
So 6,197.8+313.7 6,800.2+283.3 0.163 112.7+11.6 194.1£19.9 0.008 2.0+0.2 3.0+0.3 0.139
Sio 4,051.4+244.1 4,673.8+221.4 0.067 99.6+10.7 156.6+13.2 0.002 2.4+0.2 3.5+0.3 < 0.001
Sui 4,640.7+254.1 6,396.4+2543 < 0.001 138.1+13.9 324.7£257 < 0.001  2.9+0.2 5.0+0.3 < 0.001
Si2 5,919.2+306.3 7911.4+305.8 < 0.001 278.5+30.5 558.6+54.1 <0.001 4.5+04 6.8+0.5 < 0.001
“independent 7-test
“Mann-Whitney U test

observed in the LC volume within quadrant Q, characterized by a high density of blood vessels.
By applying our method, which involved the removal of blood vessels, we could calculate the
LC structure and porosity within this region, facilitating tissue visualization in Qy. Notably, the
tissues in quadrant Qy and Qy are closely situated, suggesting that the deterioration of tissues in
Qq may have a corresponding impact on the tissues in Qn. Again, these observations underscore
the significance of quadrant-specific analysis, revealing distinct characteristics of the LC structure
and highlighting the impact of tissue degeneration in different quadrants.

Next, the sector division structure was employed to analyze the differences between glaucoma
and non-glaucoma groups. An independent #-test was conducted to compare the LC volume
of each sector, except for sectors Sz, S4, and Sg, where the Mann-Whitney U test was utilized.
Significant differences were observed between the two groups in all sectors, except for sectors Sy,
So, and Syg. Sectors Sg and S, situated in quadrant Qr, exhibited no differences between the
groups, which aligns with the analysis conducted at the quadrant level. Interestingly, sector Sy,
located in quadrant Qy, showed no difference. This outcome can be attributed to the significant
removal of blood vessels in this quadrant, resulting in similar and relatively small average LC
volumes in both sample groups. Next, the Mann-Whitney U test was employed to analyze the
pore volume characteristics in all sectors, revealing significant differences across the board. The
calculations indicated that glaucomatous eyes had a lower pore volume than non-glaucomatous
eyes. Among the glaucoma group, sector Sy, located in Qg, showed the largest pore volume.

According to Table 3, we observed significant differences in LC volume between the two
groups in all sectors, except for sectors S4, Sg, and Sjg. In terms of pore volume, there was
a significant difference between the two sample groups in all sectors. When comparing the
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pore-to-LC volume as a normalized measure, we found a significant difference between the two
sample groups in all sectors, except for Sg. Therefore, sector Sg is the only sector that did not
exhibit any differences between the two sample groups.

Moreover, the results demonstrate that the LC volume and pore volume of the glaucoma
group were significantly lower than those of the non-glaucoma group by approximately 20-25%
(»<0.001) and approximately 50% (p<0.001), respectively. Typically, there is a correlation
between LC area and pore area [30]. Therefore, it can be expected that the differences in LC
volume and pore volume between glaucoma and non-glaucoma groups from the same set would
be comparable. In this study, we observed a clear reduction in pore volume in the glaucoma
group compared to the non-glaucoma group. This could be attributed to excluding blood vessels
from the 3D LC in the vertical direction, potentially neglecting the underlying pores beneath
the blood vessels. Consequently, the pore volume was lower than expected, resulting in a lower
pore-to-volume in the glaucoma group compared to the non-glaucoma group.

Additionally, the study investigated the relationship between disc area and LC volume. It was
observed that individuals with a smaller disc area tended to have a smaller LC volume, while
those with a larger disc area exhibited a larger LC volume, as reported in a previous study by
Hoffmann et al. [31]. To explore this relationship, linear regression analysis was conducted. The
results indicated a significant correlation between disc area and LC volume in all areas examined,
suggesting that disc area influences the size of the LC (p<0.05). Importantly, there were no
significant differences in disc area between glaucoma and non-glaucoma groups.

4.2. 3D visualization

The 3D structure images of the LC in glaucomatous and non-glaucomatous eyes were generated
from OCT images using the method described in Section 3.3, as illustrated in Fig. 11. Our
findings revealed that:

(1) The thickness of the LC structure exhibited clear differences between the two sample
groups. Specifically, the LC thickness in the non-glaucoma group was greater than that in
the glaucoma group, which aligns with the data collected from the samples — the average
LC thickness was 188 um for glaucomatous eyes and 289 wm for non-glaucomatous eyes.

(2) The density of the LC structure exhibited clear differences between the two sample groups.
In this context, the density refers to the distribution of LC tissue (voxels) within the LC
cylindrical structure. The structure of the non-glaucoma group was denser than that of the
glaucoma group, which could be visually observed. By considering the division of the LC
into quadrants and sectors, we found the following:

(i) Regions S4 and Ss, situated in the Qx and Qp quadrants of the LC, respectively,
exhibited tissue degeneration. This observation was supported by the lower density
of structures in these regions compared to the non-glaucoma group, aligning with the
findings of the clinical study.

(ii) Tissue degeneration was found in the Qg area, but it was not noticeable. However,
a significant difference was found when calculating the volume and comparing the
difference using the independent ¢-test method as shown in Table 3.

(iii) The edge of the LC tissue in glaucomatous eyes was challenging to define due to
the larger cup size in the glaucoma group. This led to the displacement of blood
vessels towards the edge of the LC, making it challenging to determine the boundaries
accurately.

In our study, several limitations were encountered. Firstly, we did not utilize the 3mm X
3mm or 6mm X 6mm scan modes, which are available on our machine, due to computational
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(b)

Fig. 11. Optic disc image, LC image, 3D LC reconstruction in solid volume, side view
of 3D LC rendering image, and top view of 3D LC rendering image of (a) glaucomatous
eyes and (b) non-glaucomatous eyes. The color bar indicates the density, with dark colors
representing low density and bright colors representing high density.
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constraints and limitations of our computing resources. Instead, we opted for the wider scan
mode of 12mm X 9mm to reduce information density and alleviate the computational burden.
While this decision facilitated the completion of 3D image reconstruction within our computer
system’s capabilities, it may have resulted in lower-resolution images. Although the narrower
scan mode could potentially offer higher resolution and more accurate results, we made a practical
adjustment considering the constraints we faced in data collection and processing. Another
limitation we faced was the difficulty in automatically identifying the anterior and posterior
lamina surfaces in the LC images obtained using SS-OCT. Manual intervention or additional
processing steps were required to identify these surfaces, which added complexity to our analysis.
Additionally, our study encountered a limitation in evaluating the performance of the blood
vessel removal technique. Due to the absence of labeled images to assess performance, we
were unable to conduct a comprehensive evaluation. This limitation highlights the need for
future research. Due to the limited data sample size, relying solely on quantitative analysis
conducted on the test samples would compromise the statistical power and robustness of our
analysis. Consequently, we expanded our analysis to include all available samples, including
those used in the segmentation model. However, it is worth noting that we have provided the
performance of the model on the training and validation sets as well. These results demonstrate
a strong correlation between the predicted segmentations and the labeled images, indicating
accuracy and reliability in our findings. Lastly, we analyzed the LC pore and volume from the
layer with complete optic nerve tissue. Therefore, images with deep cupping, usually found in
advanced glaucoma, were excluded.

5. Conclusion

This research focused on reconstructing 3D LC images obtained from SS-OCT scans of
glaucomatous and non-glaucomatous eyes. The study examined three key characteristics: LC
volume, pore volume, and pore-to-volume. These characteristics were calculated based on dividing
the LC structure into three levels: overall, quadrants, and sectors. The 3D LC reconstruction
images revealed noticeable differences between the two sample groups, which aligned with
significant differences observed in all three characteristics. Specifically, the degeneration of the
LC structure was observed in quadrants Qs, Q, and Qy, which coincided with the significant
differences in LC volumes in these quadrants. Furthermore, significant differences were found in
specific sectors: Sy, S11, and Sy2 in Qs; S» and S3 in Qn; and Ss, Sg, and S7 in Q. Analysis of
pore volume characteristics also revealed significant differences between the two groups, with
similar trends observed for the pore-to-LC volume, except for sector Sg. In summary, this study
demonstrated distinct differences in glaucomatous and non-glaucomatous eyes regarding LC
volume, pore volume, and pore-to-LC volume across various regions of interest.
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